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In this paper, we consider the variable coefficient Poisson equation with Dirichlet
boundary conditions on an irregular domain and show that one can obtain second-
order accuracy with a rather simple discretization. Moreover, since our discretization
matrix is symmetric, it can be inverted rather quickly as opposed to the more com-
plicated nonsymmetric discretization matrices found in other second-order-accurate
discretizations of this problem. Multidimensional computational results are presented
to demonstrate the second-order accuracy of this numerical method. In addition, we
use our approach to formulate a second-order-accurate symmetric implicit time dis-
cretization of the heat equation on irregular domains. Then we briefly consider Stefan
problems. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

In [20] the ghost fluid method [7] was used as a guide to develop a first-order-accurate
symmetric discretization of the variable coefficient Poisson equation in the presence of an
irregular interface across which the variable coefficients, the solution, and the derivatives
of the solution may have jumps. This new numerical method was applied to two-phase
incompressible flow in [15] and to incompressible flame front discontinuities in [21]. In
this paper, we consider a similar Poisson equation where Dirichlet boundary conditions
(instead of jump conditions) are imposed on the irregular interface. In this case, the solution
is not coupled across the interface, and we are able to design a second-order-accurate
symmetric discretization as opposed to the first-order-accurate discretization proposed in
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[20] for the jump condition case. Both the discretization proposed here and that in [20] yield
symmetric matrices that can readily be inverted with a number of fast methods; e.g., we
use a preconditioned conjugate gradient (PCG) method (see, e.g., [10]) in both instances.
We note that [18] designed a second-order-accurate method for the jump condition case as
well, but their discretization matrix is not symmetric.

This new second-order-accurate symmetric discretization is also quite useful for solving
Stefan problems. We use a level set formulation [22] to represent the interface location
and a finite difference discretization of the heat equation on a Cartesian grid to solve for
the temperature. In order to avoid the stringent O(�x2), or even worse O(θ2�x2) with
0 < θ ≤ 1 for cells cut by the interface, time step restriction imposed by explicit time
discretization of the heat equation, we use an implicit time discretization. This requires a
matrix inversion that can be rather time-consuming especially if one uses a nonsymmetric
discretization of the spatial terms. This was the case in [5] where the nonsymmetric matrix
was inverted with the (very slow) Gauss–Seidel method (see, e.g., [10]). Our alternative
symmetric discretization allows a (relatively fast) PCG method to be used for the matrix
inversion.

The earliest level set method for solidification type problems was presented in [27]
where the authors recast the equations of motion into a boundary integral equation and used
the level set method to update the location of the interface. In [5] the boundary integral
equations were avoided by using a finite difference method to solve the heat equation on a
Cartesian grid with Dirichlet boundary conditions imposed on the interface. The jump in
the first derivatives of the temperature was used to compute an interface velocity which was
extended to a band about the interface and used to evolve a level set function in time. The
velocity calculation in [5] is rather awkward and both the standard grid and a 45◦ rotated
grid are used to aid in the removal of nonphysical grid anisotropy effects. This velocity
computation was improved upon in [17] where the authors show good agreement between
the level set method and phase field methods for the case where the thermal conductivities
are the same in both materials. In addition, [17] showed that the level set method continues to
perform well for the case where the thermal conductivities are different in the two materials.
For more details on phase field methods for the Stefan problem, see [17] and the references
therein.

In [30], the authors discretized the heat equation on a Cartesian grid in a manner very
similar to that proposed in [5], resulting in a nonsymmetric matrix when applying an implicit
time discretization. Reference [30] used front tracking to update the location of the interface,
improving upon the front-tracking approach proposed in [14], which used the smeared out
immersed boundary method from [23] and explicit time stepping. The interested reader
is also referred to [4] for an interesting analysis of the immersed boundary method in
conjunction with heat transport.

In [12], the authors solved a variable coefficient Poisson equation in the presence of
an irregular interface where Dirichlet boundary conditions were imposed. They used a
finite volume method that results in a nonsymmetric discretization matrix. Both multigrid
methods and adaptive mesh refinement were used in [12], and in [11] this nonsymmetric
finite volume discretization was coupled to a volume of fluid front tracking method in order
to solve the Stefan problem.

The interested reader is referred to [5, 14] and the references therein for an extensive
summary of computational results for the Stefan problem. Most notably, [25] uses adaptive
finite element methods for both the heat equation and for the interface evolution producing
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spectacular (and rare) three-dimensional results. Other impressive three-dimensional results
can be found in the phase field model of [16] and the finite difference diffusion Monte Carlo
method of [24].

2. EQUATIONS

2.1. Poisson Equation

Consider a Cartesian computational domain, �, with exterior boundary, ∂�, and a lower
dimensional interface, 	, that divides the computational domain into disjoint pieces, �−

and �+. The variable coefficient Poisson equation is given by

∇ · (β(
x)∇u(
x)) = f (
x), 
x ∈ �, (1)

where 
x = (x, y, z) are the spatial dimensions, ∇ = ( ∂
∂x , ∂

∂y , ∂
∂z ) is the divergence operator,

and β(
x) is assumed continuous on each disjoint subdomain, �−and �+, but may be
discontinuous across the interface 	. Furthermore, β(
x) is assumed to be positive and
bounded below by some ε > 0. On ∂�, either Dirichlet boundary conditions of u(
x) = g(
x)

or Neumann boundary conditions of un(
x) = h(
x) are specified. Note that un = ∇u · 
N is
the normal derivative of u with normal 
N .

In [20], Eq. (1) was solved with a first-order numerical method when the jump conditions
[u]	 = a(
x) and [βun]	 = b(
x) were specified across the interface. If instead, a Dirichlet
boundary condition of u	 = c(
x) is specified on the interface, then Eq. (1) decouples into
two separate equations, one on �− and one on �+. Any jumps of u, βun , or β across the
interface can be ignored, allowing Eq. (1) to be considered separately and independently
on �− and on �+.

2.2. Heat Equation

Starting from conservation of mass, momentum, and energy, we can obtain

ρet + ρ 
V · ∇e + p∇ · 
V = ∇ · (k∇T ), (2)

where ρ is the density, e is the internal energy per unit mass, 
V = 〈v1, v2, v3〉 are the veloc-
ities, p is the pressure, k is the thermal conductivity, and T is the temperature. Assuming
that e depends on at most temperature, and that the specific heat at constant volume, cv ,
is constant leads to e = eo + cv(T − To), where eo is the internal energy per unit mass at
some reference temperature To [3]. This and the incompressibility assumption, ∇ · 
V = 0,
simplify Eq. (2) to

ρcvTt + ρcv

V · ∇T = ∇ · (k∇T ), (3)

which can be further simplified to the standard heat equation

ρcvTt = ∇ · (k∇T ), (4)

ignoring the effects of convection, i.e., setting 
V = 0.
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2.3. Interface Velocity and Jump Conditions

Unreacted and reacted incompressible flows are separated by an interface across which
the unreacted material is converted to the reacted material, and we use “u” and “r” sub-
scripts to refer to the unreacted and reacted materials, respectively. The interface velocity
is denoted by 
W = D 
N , where D is the normal component, of the interface velocity and

N = 〈n1, n2, n3〉 is the local unit normal to the interface. The normal component, of the

interface velocity is calculated by adding the unreacted materials normal velocity to the
reaction speed, S. That is, D = (VN )u + S, where VN = 
V · 
N is the normal velocity.

Conservation of mass, momentum, and energy implies the standard Rankine–Hugoniot
jump conditions across the interface

[ρ(VN − D)] = 0 (5)

[ρ(VN − D)2 + p] = 0 (6)[(
ρe + ρ(VN − D)2

2
+ p

)
(VN − D)

]
= [k∇T · 
N ], (7)

where [A] = Ar − Au defines “[·]” as the jump in a quantity across the interface. Equation 7
was derived assuming that the tangential velocities are continuous across the interface, which
is true when D �= VN , i.e., S �= 0 (see, e.g., [8]). This equation can be rewritten as

−ρu S

([
e + p

ρ

]
+ ρ2

u S2

2

[
1

ρ2

])
= [k∇T · 
N ] (8)

using Eq. (5) and D = (VN )u + S. Assuming the enthalpy per unit mass, h = e + p
ρ

, de-
pends on at most temperature and that the specific heat at constant pressure, cp, is constant
leads to h = ho + cp(T − To), where ho is the enthalpy per unit mass at some reference
temperature To [3]. This allows us to rewrite Eq. (8) as

−ρu S

(
[ho] + [cp](TI − To) + ρ2

u S2

2

[
1

ρ2

])
= [k∇T · 
N ], (9)

where we have used the fact that the temperature is continuous across the interface, [T ] = 0,
and labeled the interface temperature TI . It is convenient to choose a reference temperature
To equal to the standard temperature at which the reaction takes place; e.g., in the case of
freezing water To = 273 K.

For the Stefan problem, we assume that there is no expansion across the front (i.e.,
[ρ] = 0), reducing Eq. (5) to [VN ] = 0, Eq. (6) to [p] = 0, and Eq. (9) to

−ρS([ho] + [cp](TI − To)) = [k∇T · 
N ], (10)

where ρ = ρu = ρr . Furthermore, the standard interface boundary condition of TI = To

reduces this last equation to

−ρS[ho] = [k∇T · 
N ], (11)

where [ho] is calculated at the reaction temperature of TI = To.
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2.4. Level Set Equation

The level set equation

φt + 
W · ∇φ = 0 (12)

is used to keep track of the interface location as the set of points where φ = 0. The unreacted
and reacted materials are then designated by the points where φ > 0 and φ ≤ 0, respectively.
Using φ ≤ 0 instead of φ = 0 for the reacted points removes the measure zero ambiguity
of points that happen to lie on the interface. In this sense, the numerical interface lies in
between φ = 0 and the positive values of φ and can be located numerically by finding the
zero level of φ. To keep the values of φ close to those of a signed distance function, i.e.,
|∇φ| = 1, the reinitialization equation

φτ + S(φo)(|∇φ| − 1) = 0 (13)

is iterated for a few steps in ficticious time, τ . Here S(φo) is a smoothed out sign function.
The level set function is used to compute the normal 
N = ∇φ

|∇φ| and the curvature κ = −∇ · 
N
in a standard fashion. For more details on the level set function, see [7, 15, 22, 29].

3. NUMERICAL METHOD

3.1. Poisson Equation

Consider the variable coefficient Poisson equation in one spatial dimension

(βux )x = f (14)

with Dirichlet boundary conditions of u = g on the interface where φ = 0. One can consider
each simply connected portion of the domain separately, i.e., Eq. (14) can be solved on the
subdomain where φ ≤ 0 independent of the solution procedure for the subdomain where
φ > 0. Although in practice, it is usually simpler and more efficient to solve for both
subdomains at the same time.

The computational domain is discretized into cells of size �x where the cell centers are
referred to as grid points or grid nodes with the i th grid node located at xi . The cell edges are
referred to as fluxes so that the two fluxes bounding the i th computational cell are located
at xi± 1

2
. The solution to the Poisson equation is computed at the grid nodes and is written

as ui = u(xi ). An analogous definition holds for fi , βi , and φi . Since β and φ are known
only at the grid nodes xi , their values at the fluxes is defined by the linear average of the
nodal values, e.g., φi+1/2 = (φi + φi+1)/2 is a second-order-accurate approximation to φ at
the flux located between the i th and (i + 1)st cells.

In the absence of an irregular interface, the standard discretization for Eq. (14),

βi+ 1
2

( ui+1 − ui

�x

) − βi− 1
2

( ui − ui−1

�x

)
�x

= fi , (15)

can be used to solve this problem with Dirichlet u = g boundary conditions on ∂� enforced
by setting ui = gi when xi is a boundary point. For each unknown, ui , Eq. (15) is used to
fill in one row of a matrix creating a linear system of equations. Since the resulting matrix
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is symmetric, a wide number of fast linear solvers can be used. In the examples section,
the symmetric linear system is solved with a PCG method using an incomplete Choleski
preconditioner [10].

Next, suppose that an interface point, xI , is located in between two grid points xi and
xi+1 with a Dirichlet u = uI boundary condition applied at xI . Here we will only address
computing the numerical solution to the left of xI noting that it is independent of the solution
to the right of xI . Equation (15) is still valid for all the unknowns to the left and including
ui−1, but can no longer be applied at xi to solve for ui since the subdomain to the left of xI

does not contain a valid value of ui+1. This can be remedied by defining a ghost value of
uG

i+1 at xi+1 and rewriting Eq. (15) as

βi+ 1
2

(
uG

i+1 − ui

�x

)
− βi− 1

2

( ui − ui−1

�x

)
�x

= fi (16)

in order to solve for ui . Possible candidates for uG
i+1 include

uG
i+1 = uI (17)

uG
i+1 = uI + (θ − 1)ui

θ
(18)

and

uG
i+1 = 2uI + (2θ2 − 2)ui + (−θ2 + 1)ui−1

θ2 + θ
(19)

using constant, linear, and quadratic extrapolation, respectively. Here θ ∈ [0, 1] is defined
by θ = xI − xi

�x and can be calculated as θ = |φ|
�x since φ = 0 at xI and is signed away from xI .

Since Eqs. (18) and (19) are poorly behaved for small θ , they are not used when θ ≤ �x .
Instead, ui is set equal to uI , which effectively moves the interface from xI to xi . This
second-order-accurate perturbation of the interface location does not degrade the overall
second-order accuracy of the solution obtained using Eq. (15) to solve for the remaining
unknowns. Furthermore, ui = uI is second order accurate as long as the desired solution
has bounded first derivatives.

Plugging Eq. (19) into Eq. (16) gives a nonsymmetric discretization of

(
uI − ui
θ�x

) − ( ui − ui−1

�x

)
.5(θ�x + �x)

= fi (20)

in the case of β = 1. Equation (20) is the nonsymmetric discretization used in [5, 30]
to obtain second-order-accurate numerical methods. That is, both [5] and [30] use the
quadratic extrapolation given in Eq. (19) to obtain second-order accuracy. Alternatively,
plugging Eq. (18) into Eq. (16) gives a symmetric discretization of

βi+ 1
2

(
uI − ui
θ�x

) − βi− 1
2

( ui − ui−1

�x

)
�x

= fi (21)

based on linear extrapolation in the partial cell. Surprisingly, this symmetric discretization
is second-order-accurate as well. This was first pointed out in [6] and is elaborated on here.
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Assume that the standard second-order-accurate discretization in Eq. (15) is used to obtain
the standard linear system of equations for u at every grid point except for xi , and Eq. (16) is
used to write a linear equation for ui introducing a new unknown uG

i+1. The system is closed
with Eq. (18) for uG

i+1. In practice, Eqs. (18) and (16) are combined to obtain Eq. (21) and a
symmetric linear system. Solving this linear system of equations leads to well-determined
values (up to some prescribed tolerance near roundoff error levels) of u at each grid node
in the subdomain as well as a well-determined value of uG

i+1 (from Eq. (18)). Designate 
u
as the solution vector containing all these values of u.

Next, consider a modified problem where a Dirichlet boundary condition of ui+1 = uG
i+1

is specified at xi+1, where uG
i+1 is chosen to be the value of uG

i+1 from 
u (defined above).
This modified problem can be discretized to second-order accuracy everywhere using the
standard discretization in Eq. (15) at every node except at xi where Eq. (16) is used. Note
that Eq. (16) is the standard second-order-accurate discretization when a Dirichlet boundary
condition of ui+1 = uG

i+1 is applied at xi+1. Thus, this new linear system of equations can
be solved in standard fashion to obtain a second-order-accurate solution at each grid node.
The realization that 
u (defined above) is an exact solution to this new linear system implies
that 
u is a valid second-order-accurate solution to this modified problem.

Since 
u is a second-order accurate solution to the modified problem, 
u can be used
to obtain the interface location for the modified problem to second-order accuracy. The
linear interpolant that uses ui at xi and uG

i+1 at xi+1 predicts an interface location of exactly
xI . Since higher order accurate interpolants (higher than linear) can contribute at most an
O(�x2) perturbation of the interface location, the interface location dictated by the modified
problem is at most an O(�x2) perturbation of the true interface location, xI . Thus, 
u is
a second-order-accurate solution to a modified problem where the interface location has
been perturbed by O(�x2). This makes 
u a second-order-accurate solution to the original
problem as well. (The interested reader is referred to a more detailed proof of a related
discretization to a similar problem; see Jones and Menzies [13].)

Similarly, note that plugging Eq. (17) into Eq. (15) effectively perturbs the interface by
an O(�x) amount resulting in a first-order-accurate algorithm.

In certain situations, β may only be known at the grid nodes and the interface, in which
case βi+ 1

2
in Eq. (21) can be determined from a ghost value, βG

i+1, and the usual averaging,

βi+ 1
2

= βi + βG
i+1

2
, (22)

noting that the ghost value is easily defined using linear extrapolation,

βG
i+1 = βI + (θ − 1)βi

θ
, (23)

according to Eq. (18).
In multiple spatial dimensions, the equations are discretized in a dimension by dimension

manner using the one-dimensional discretization outlined above. That is, the (βux )x , (βuy)y ,
and (βuz)z terms in Eq. (1) are each discretized independently in the same manner that
(βux )x was discretized in Eq. (14) above.
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3.2. Heat Equation

Consider the heat equation (4) with an explicit Euler time discretization

T n+1 − T n

�t
= 1

ρcv

∇ · (k∇T n) (24)

and Dirichlet boundary conditions of T = g on the interface where φ = 0. Assuming that
ρ and cv are constant in each subdomain allows Eq. (24) to be rewritten as

T n+1 − T n

�t
= ∇ · (k̂∇T n), (25)

where k̂ = k
ρcv

. For stability, a time step restriction of

�t k̂

(
2

(θ1�x)2
+ 2

(θ2�y)2
+ 2

(θ3�z)2

)
≤ 1 (26)

is needed where θ1, θ2, and θ3 are the cell fractions in each spatial dimension for cells cut
by the interface with 0 < θ1, θ2, θ3 ≤ 1.

Implicit Euler time discretization

T n+1 − T n

�t
= ∇ · (k̂∇T n+1) (27)

avoids the time step stability restriction in Eq. (26). Equation (27) can be rewritten as

T n+1 − �t∇ · (k̂∇T n+1) = T n, (28)

where the ∇ · (k̂∇T n+1) term is discretized in the same fashion as the variable coefficient
Poisson equation (above) noting that each subdomain can be considered independently. For
each unknown, T n+1

i , Eq. (28) is used to fill in one row of a matrix creating a linear system of
equations. Since the resulting matrix is symmetric, a wide number of fast linear solvers can
be used. In the examples section, the symmetric linear system is solved with a PCG method
using an incomplete Choleski preconditioner [10]. Note that Eq. (27) is first order in time
and second order in space, and one needs to choose �t proportional to �x2 in order to obtain
an overall asymptotic accuracy of O(�x2). In the numerical examples section, we chose
the time step for the heat equation as either �t H = 0.5�x or �t H = 0.5�x2 depending on
whether we are trying to obtain first- or second-order overall accuracy, respectively.

The Crank–Nicolson scheme

T n+1 − T n

�t
= 1

2
∇ · (k̂∇T n+1) + 1

2
∇ · (k̂∇T n) (29)

can be used to achieve second order accuracy in both space and time with �t proportional to
�x . In the numerical examples section, we choose �t H = 0.5�x . For the Crank–Nicolson
scheme,

T n+1 − �t

2
∇ · (k̂∇T n+1) = T n + �t

2
∇ · (k̂∇T n) (30)

is used to create a symmetric linear system of equations for the unknowns T n+1
i .
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3.3. Stefan Problem

3.3.1. Interface Velocity

Equation (11) is used to find the reaction speed S using the jump in k∇T · 
N across the
interface. Thus, accurate values of the temperature gradient are needed at grid nodes near
the interface. The local unit normal 
N = ∇φ

|∇φ| is computed using the level set method (as
described in [15]).

Once TN is defined in a band about the interface, we extrapolate the values of (TN )r

from the reacted side of the interface to the unreacted side and extrapolate the values
of (TN )u from the unreacted side to the reacted side so that both (TN )r and (TN )u are
defined at every grid point in a band about the interface. This is accomplished with
constant extrapolation in the direction normal to the interface and implemented by
solving

Iτ ± 
N · 
∇ I = 0 (31)

to steady state where Iτ = 0. This is done separately to advect I = (TN )r in one direction
and to advect I = (TN )u in the other direction. Instead of time marching equation (31) in
fictitious time τ , a first-order-accurate solution to the steady state of Eq. (31) is obtained us-
ing the fast (velocity) extension method in [1] (which is based on the fast marching method;
see, e.g., [26]).

Once values of both (TN )r and (TN )u have been defined at grid nodes near the interface,
Eq. (11) is used to find the reaction speed S calculating [k∇T · 
N ] in a node by node fashion
using the nodal values of (TN )r and (TN )u .

We use the following procedure to calculate ∇T at grid points near the interface. There
are four cases to consider when computing (Tx )i, j,k : Case 1—If Ti, j,k , Ti−1, j,k , and Ti+1, j,k

all lie on the same side of the interface, then (Tx )i, j,k is calculated with Ti, j,k and either
Ti−1, j,k or Ti+1, j,k depending on which of these two is closer to the interface as determined
by the local absolute value of φ. Case 2—If Ti, j,k and Ti−1, j,k lie on one side of the inter-
face, and Ti+1, j,k lies on the other side of the interface, then (Tx )i, j,k is calculated using
Ti, j,k and the local interface boundary condition for T as long as the distance from 
xi, j,k to
the interface is greater than �x2. Otherwise, Ti−1, j,k is used in place of Ti, j,k . Case 3—If
Ti, j,k and Ti+1, j,k lie on one side of the interface, and Ti−1, j,k lies on the other side of the
interface, then (Tx )i, j,k is calculated using Ti, j,k and the local interface boundary condition
for T as long as the distance from 
xi, j,k to the interface is greater than �x2. Otherwise,
Ti+1, j,k is used in place of Ti, j,k . Case 4—If Ti, j,k lies on one side of the interface and
both Ti−1, j,k and Ti+1, j,k lie on the opposite side of the interface, then the two local in-
terface boundary conditions for T are used to calculate (Tx )i, j,k as long as the distance
between the two interface locations is greater than �x2. Otherwise, the problem is under-
resolved and we set (Tx )i, j,k = 0 under the assumption that there is little variance in T in
between these two very close points on the interface. Ty and Tz are calculated in a similar
fashion.

The level set function is evolved in time from φn to φn+1 using nodal velocities, 
W =
S 
N , and a third-order-accurate TVD Runge–Kutta (see [15, 28]) time-stepping method.
Detailed discretizations for Eq. (12) and for Eq. (13) are given in [7]. Note that the
fifth-order WENO discretization from [7] is used to discretize the spatial terms in
Eqs. (12) and (13) for the numerical examples in this paper. For stability, a time step
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restriction of

�t L

(
w1

�x
+ w2

�y
+ w3

�z

)
≤ 0.5 (32)

is used in solving Eq. (12) with 
W = 〈w1, w2, w3〉. The overall time step is chosen as
min(�t H , �t L), where �t H = 0.5�x or �t H = 0.5�x2 as outlined above.

3.3.2. Ghost Cells

Equations (28) and (30) require a valid value of T n at each grid point. As the interface
moves, the grid points that cross the interface may no longer have valid values of T n .
For example, consider the solidification of water where a grid point in the water with
T n > 273.15 K crosses over the interface into the ice. Now that grid point is associated
with the ice, but still has T n > 273.15 K as opposed to a correct value of T n < 273.15 K.
These errors seem to have been ignored by most authors and are probably negligible when
the temperature is continuous across the interface. However, when the temperature (or more
likely its equivalent in a related problem) is discontinuous across the interface, using this
invalid value of T n can cause significant errors.

In order to determine a ghost cell value of T n
i, j,k at a grid point adjacent to the interface,

we use the interface boundary condition TI = g(
x I ) at the closest interface location 
x I =

xi, j,k − φi, j,k 
N . Then assuming the temperature profile is locally linear, the ghost value is
defined as T n

i, j,k = TI + φi, j,k(TN )i, j,k , where (TN )i, j,k is the value of TN that has already
been extrapolated from the other side of the interface. That is, on the reacted side of the
interface the extrapolated value of (TN )u is used, and on the unreacted side of the interface
the extrapolated value of (TN )r is used.

Besides a valid value of T n , Eq. (30) requires a valid value of �t
2 ∇ · (k̂∇T n) at each

grid point implying that ghost cell values of �t
2 ∇ · (k̂∇T n) need to be defined in grid cells

adjacent to the interface in case they are uncovered as the interface moves across the grid.
Since a second-order accurate quadratic extension of a function does not change the values
of its second derivative, ghost cell values of �t

2 ∇ · (k̂∇T n) are calculated by extrapolating
this term across the interface according to Eq. (31) with I = �t

2 ∇ · (k̂∇T n). Once again the
fast extension method from [1] is used. Here, in order to get smooth values of I , an isobaric
fix technique (see [9] and [7]) is used to extrapolate the values of I across the interface
that are at least one grid cell away from the interface, as opposed to the usual procedure of
extrapolating the values that are adjacent to the interface.

4. EXAMPLES

In each example, we use the level set function φ in order to decompose the domain into
separate regions. The interior region �− is defined by φ ≤ 0 while the exterior region �+

is defined by φ > 0. In each example, the L1 and L∞ errors are computed at the final time.

4.1. Poisson Equation

Here we consider Eq. (1) for cases where β is piecewise constant on each subdomain or
spatially varying on each subdomain. When β is constant on a subdomain, it can be moved to
the right-hand side rewriting Eq. (1) as �u = f̂ where f̂ = f

β
. In this case, β can be ignored.

Since �− is completely decoupled from �+, we only compute solutions for �− here.



SECOND-ORDER-ACCURATE SYMMETRIC DISCRETIZATION 215

TABLE I

1D Laplace Equation

Number of points L1-error Order L∞-error Order

41 4.422 × 10−4 — 9.236 × 10−4 —
81 1.132 × 10−4 1.97 2.654 × 10−4 1.79

161 2.736 × 10−5 2.04 7.306 × 10−5 1.86

4.1.1. Example 1

Consider uxx = f on � = [−0.5, 0.5] with an exact solution of u = 4x2 sin(2πx) on
�− where φ = |x | − 0.313 so that the interface does not lie on a grid point in our test cases.
Table I shows the results of the numerical accuracy tests.

4.1.2. Example 2

Consider (βux )x = f on � = [−0.5, 0.5] with an exact solution of u = e4x sin(2πx)

and β = cos(x) on �− where φ = |x | − 0.313. Figure 1 shows the numerical solution with
61 grid points, and Table II shows the results of the numerical accuracy tests.

4.1.3. Example 3

This example was taken from [19]. Consider �u = f on � = [−1, 1] × [−1, 1] with an
exact solution of u = x2 + y2 on �−. The interface is parameterized by (x(θ), y(θ)) where
x(θ)=0.02

√
5+ (0.5+0.2 sin(5θ)) cos(θ) and y(θ)= 0.02

√
5+ (0.5+0.2 sin(5θ)) sin(θ)

with θ ∈ [0, 2π ]. In order to compute φ, the interface was divided into 2000 equally spaced
points. At each grid node, the magnitude of the signed distance function φ was computed
using the closest point, and the sign of φ was computed by using the cross-product between

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
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FIG. 1. 1D Poisson equation, (βux ) = f , on [−0.313, 0.313] with Dirichlet boundary conditions. The circles
are the computed solution, and the solid line is the exact solution.
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TABLE II

1D Poisson Equation

Number of points L1-error Order L∞-error Order

41 1.939 × 10−2 — 8.072 × 10−2 —
81 5.015 × 10−3 1.95 2.010 × 10−2 2.01

161 1.198 × 10−3 2.06 5.532 × 10−3 1.86

the normal and tangent vectors to the interface so that φ is negative inside the closed contour.
Table III shows the results of the numerical accuracy tests.

4.1.4. Example 4

This example was taken from [19]. Consider ∇ · (β∇u) = f on � = [−1, 1] × [0, 3]
with an exact solution of u = ex (x2 sin(y) + y2) and β = 2 + sin(xy) on �−. The interface
is parameterized by (x(θ), y(θ)) where x(θ) = 0.6 cos(θ) − 0.3 cos(3θ) and y(θ) = 1.5 +
0.7 sin(θ) − 0.07 sin(3θ) + 0.2 sin(7θ) with θ ∈ [0, 2π ]. φ is computed as in Example 3.
Figure 2 shows the numerical solution with 61 grid points in the x-direction and 121
grid points in the y-direction, and Table IV shows the results of the numerical accuracy
tests.

4.1.5. Example 5

Consider �u = f on � = [0, 1] × [0, 1] × [0, 1] with an exact solution of u(x, y, z) =
e−x2−y2−z2

on�− whereφ =
√

(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 − 0.3. Table V shows
the results of the numerical accuracy tests.

4.1.6. Example 6

Consider ∇ × (β∇u) = f on � = [0, 1] × [0, 1] × [0, 1] with an exact solution
of u = sin(4πx) sin(4πy) sin(4π z), and β = xyz on �− where φ =√

(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 − 0.3. Table VI shows the results of the numer-
ical accuracy tests.

4.2. Heat Equation

Here we consider Eq. (4) where k is a (possibly different) constant on each subdomain.
In this case, Eq. (4) can be rewritten as Tt = k̂�T where k̂ = k/ρcv . In the examples below,
we take k̂ = 1.

TABLE III

2D Laplace Equation

Number of points L1-error Order L∞-error Order

101 × 101 7.329 × 10−5 — 9.777 × 10−5 —
201 × 201 1.776 × 10−5 2.04 2.427 × 10−5 2.01
401 × 401 4.714 × 10−6 1.92 6.178 × 10−6 1.97



SECOND-ORDER-ACCURATE SYMMETRIC DISCRETIZATION 217

TABLE IV

2D Poisson Equation

Number of points L1-error Order L∞-error Order

81 × 121 2.414 × 10−4 — 1.129 × 10−3 —
161 × 241 6.291 × 10−5 1.93 3.043 × 10−4 1.87
321 × 481 1.707 × 10−5 1.88 7.804 × 10−5 1.94

TABLE V

3D Laplace Equation

Number of points L1-error Order L∞-error Order

26 × 26 × 26 6.394 × 10−5 — 2.272 × 10−4 —
51 × 51 × 51 1.635 × 10−5 1.96 5.198 × 10−5 2.12

101 × 101 × 101 3.997 × 10−6 2.03 1.306 × 10−5 1.99

TABLE VI

3D Poisson Equation

Number of points L1-error Order L∞-error Order

21 × 21 × 21 1.059 × 10−2 — 3.690 × 10−2 —
41 × 41 × 41 2.370 × 10−3 2.16 8.989 × 10−3 2.03
81 × 81 × 81 5.619 × 10−4 2.03 2.170 × 10−3 2.08
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FIG. 2. 2D Poisson equation, ∇ · (β∇u) = f , with Dirichlet boundary conditions. The circles are the
computed solution, and the solid line contour outlines the irregularly shaped computational domain.
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FIG. 3. 2D heat equation, Tt = �T , with Dirichlet boundary conditions. The circles are the computed solution,
and the solid line contour outlines the irregularly shaped computational domain.

4.2.1. Example 7

Consider Tt = Txx on � = [−1, 1] with an exact solution of T = e−π2t cos(πx) on �−

where φ = |x | − 0.313. Tables VII, VIII, and IX show the results of the numerical accuracy
tests.

4.2.2. Example 8

Consider Tt = �T on � = [−1, 1] × [−1, 1] with an exact solution of T = e−2t sin(x)

sin(y) on �−. The interface is parameterized by (x(θ), y(θ)) where x(θ) = 0.02
√

5 +
(0.5 + 0.2 sin(5θ)) cos(θ) and y(θ) = 0.02

√
5 + (0.5 + 0.2 sin(5θ)) sin(θ) with θ ∈

[0, 2π ]. φ is computed as in Example 3. Figure 3 shows the numerical solution computed
with the Crank–Nicolson scheme at t = 0.1 with 81 grid points in each spatial direction.
Tables X, XI, and XII show the results of the numerical accuracy tests.

4.2.3. Example 9

Consider Tt = �T on � = [0, 0.5] × [0, 0.5] × [0, 0.5] with an exact solution of T =
e−3t sin(x) sin(y) sin(z) on �−, where φ =

√
(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 −0.15.

Figure 4 shows the z = 0.25 cross section of the numerical solution computed with the

TABLE VII

1D Heat Equation—Backward Euler—∆t ≈ ∆x

Number of points L1-error Order L∞-error Order

41 1.443 × 10−2 — 2.222 × 10−2 —
81 7.240 × 10−3 0.99 1.118 × 10−2 1

161 3.634 × 10−3 0.99 5.609 × 10−3 0.97
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TABLE VIII

1D Heat Equation—Backward Euler—∆t ≈ ∆ x2

Number of points L1-error Order L∞-error Order

41 6.198 × 10−4 — 8.866 × 10−4 —
81 1.540 × 10−4 1.98 2.194 × 10−4 2.00

161 3.839 × 10−5 2.01 5.458 × 10−5 2.00

TABLE IX

1D Heat Equation—Crank–Nicholson—∆t ≈ ∆x

Number of points L1-error Order L∞-error Order

41 4.084 × 10−4 — 6.811 × 10−4 —
81 9.907 × 10−5 2.01 1.623 × 10−4 2.08

161 2.424 × 10−5 2.03 3.993 × 10−5 2.00

TABLE X

2D Heat Equation—Backward Euler—∆t ≈ ∆x

Number of points L1-error Order L∞-error Order

81 × 81 1.282 × 10−5 — 2.340 × 10−4 —
161 × 161 5.618 × 10−6 1.19 4.131 × 10−5 2.50
321 × 321 2.539 × 10−6 1.14 7.966 × 10−6 2.37

TABLE XI

2D Heat Equation—Backward Euler—∆t ≈ ∆x2

Number of points L1-error Order L∞-error Order

81 × 81 4.886 × 10−6 — 2.340 × 10−4 —
161 × 161 9.307 × 10−7 2.39 4.131 × 10−5 2.50
321 × 321 1.687 × 10−7 2.46 7.569 × 10−7 5.77

TABLE XII

2D Heat Equation—Crank–Nicholson—∆t ≈ ∆x

Number of points L1-error Order L∞-error Order

81 × 81 5.440 × 10−6 — 2.340 × 10−4 —
161 × 161 7.888 × 10−7 2.78 4.131 × 10−5 2.50
321 × 321 1.424 × 10−7 2.46 6.207 × 10−7 6.05
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TABLE XIII

3D Heat Equation—Backward Euler—∆t ≈ ∆x

Number of points L1-error Order L∞-error Order

26 × 26 × 26 1.727 × 10−6 — 4.129 × 10−6 —
51 × 51 × 51 7.591 × 10−7 1.19 1.937 × 10−6 1.09

101 × 101 × 101 3.596 × 10−7 1.08 9.524 × 10−7 1.03

TABLE XIV

3D Heat Equation—Backward Euler—∆t ≈ ∆x2

Number of points L1-error Order L∞-error Order

26 × 26 × 26 4.139 × 10−7 — 1.294 × 10−6 —
51 × 51 × 51 1.049 × 10−7 1.98 2.958 × 10−7 2.12

101 × 101 × 101 2.559 × 10−8 2.03 7.536 × 10−8 1.97

TABLE XV

3D Heat Equation—Crank–Nicholson—∆t ≈ ∆x

Number of points L1-error Order L∞-error Order

26 × 26 × 26 5.607 × 10−7 — 2.805 × 10−6 —
51 × 51 × 51 7.620 × 10−8 2.87 2.079 × 10−7 3.75

101 × 101 × 101 2.094 × 10−8 1.86 5.617 × 10−8 1.88
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FIG. 4. 3D heat equation, Tt = �T , with Dirichlet boundary conditions. The lower dimensional z = 0.25
cross section of the solution is shown. The circles are the computed solution, and the solid line contour outlines
the computational domain.
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FIG. 5. 1D Stefan problem. The circles are the computed solution, and the solid line is the exact solution.
The interface is currently located near x = 0.75, where the temperature profile has a kink.

Crank–Nicolson scheme at t = 0.1 with 41 grid points in each spatial direction. Tables XIII,
XIV, and XV show the results of the numerical accuracy tests.

4.3. Stefan Problem

Here we consider the Stefan problem with k = ρ = cv = 1 in each subdomain. The
temperature in each subdomain is governed by the heat equation Tt = �T, and the interface
velocity is given by

S = − 1

[ho]
[∇T · 
N ] (33)

from Eq. (11). A Dirichlet T = 0 interface boundary condition is used at the interface
separating the two subdomains.

4.3.1. Example 10

Let � = [0, 1] with an exact solution of T = et−x+0.5 − 1 on �− and T = 0 on �+, where
φ = x − 0.5 at t = 0. Here, [ho] = −1 so that the interface velocity is S = [∇T × 
N ].

TABLE XVI

1D Stefan Problem—Backward Euler—∆t ≈ ∆x

Number of points L1-error Order L∞-error Order

41 7.065 × 10−4 — 8.949 × 10−4 —
81 3.542 × 10−4 0.99 4.527 × 10−4 1.01

161 1.769 × 10−4 1.01 2.272 × 10−4 0.98
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TABLE XVII

1D Stefan Problem—Crank–Nicolson—∆t ≈ ∆x

Number of points L1-error Order L∞-error Order

41 2.372 × 10−4 — 4.501 × 10−4 —
81 1.129 × 10−4 1.07 2.125 × 10−4 1.08

161 5.388 × 10−5 1.06 9.975 × 10−5 1.09

Dirichlet boundary conditions are enforced on the ∂� using the exact solutions. Figure 5
shows the numerical solution computed with the Crank–Nicolson scheme at t = 0.25 with
81 grid points. Tables XVI and XVII show the results of the numerical accuracy tests.
Note that the Crank–Nicolson scheme is no longer second order accurate overall, due to
the loss of one order of accuracy in the computed interface velocity. However, as shown
in Table XVIII, the exact interface velocity can be used to obtain the expected second-
order-accurate results (in this case the problem reduces to solving the heat equation on a
time varying domain). In general, the exact interface velocity is not known, so we use the
simpler backward Euler method for the two- and three-dimensional examples that follow.
Even though the backward Euler method is only first order accurate in time, we still derive
significant benefits from the symmetric second-order-accurate spatial discretization.

4.3.2. Example 11

Let � = [−5, 5] × [−5, 5] and consider the Frank sphere which is an exact solution of
the Stefan problem; see, for example, [2]. In two spatial dimensions, the exact interface
location is a disk of radius R = so

√
t with an exact solution of T = 0 inside the disk and

T = T∞

(
1 − F(s)

F(so)

)
(34)

outside the disk, where s = r√
t
, r =

√
x2 + y2, F(s) = E1(s2/4),

E1(z) =
∫ ∞

z

exp(ξ)

ξ
dξ (35)

and the value of so depends on the choice of T∞; e.g., we take T∞ = −0.5 implying so =
1.56. Initially, t = 1 so that R = 1.56 and φ =

√
x2 + y2 − 1.56. In this example, [ho] = 1

and the interface velocity is given by S = −[∇T · 
N ] = so

2
√

t
. Dirichlet boundary conditions

are enforced on the ∂� using the exact solution. Figure 6 shows the numerical solution

TABLE XVIII

1D Stefan Problem (Exact Interface Location)—Crank

Nicolson–∆t ≈ ∆x

Number of points L1-error Order L∞-error Order

41 2.716 × 10−5 — 6.621 × 10−5 —
81 6.789 × 10−6 2.00 1.479 × 10−5 2.16

161 1.681 × 10−6 2.01 4.055 × 10−6 1.87
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TABLE XIX

2D Stefan Problem—Backward Euler—∆t ≈ ∆x Error in the Temperature Field

Number of points L1-error Order L∞-error Order

41 1.912 × 10−3 — 2.706 × 10−2 —
81 9.587 × 10−4 0.99 1.600 × 10−2 0.75

161 4.195 × 10−4 1.19 1.148 × 10−2 0.47
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FIG. 6. 2D Stefan problem. The lower dimensional y = 0 cross section of the solution is shown. The circles
are the computed solution, and the solid line is the exact Frank sphere solution. The two interface points in this
cross section are located near x = ±2, where the temperature profile is kinked.
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FIG. 7. 2D Stefan problem. The graph shows the growing interface radius as a function of time. The exact
Frank sphere solution is plotted as a solid line, and the computed solutions are shown for four different grids. The
computed results clearly converge to the exact solution.
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TABLE XX

2D Stefan Problem—Backward Euler—∆t ≈ ∆x Error

in the Frank Sphere’s Radius

Number of points L1-error Order L∞-error Order

21 1.812 × 100 — 1.674 × 10−1 —
41 3.105 × 10−1 2.54 6.350 × 10−2 1.39
81 6.013 × 10−2 2.30 2.847 × 10−2 1.15

161 1.396 × 10−2 2.17 1.159 × 10−2 1.29

computed with the backward Euler scheme at t = 1.5 with 60 grid points in each spatial
dimension plotted on top of the exact solution. Figure 7 shows the convergence of the Frank
sphere solution’s radius as the grid size is refined. Tables XIX and XX show the results
of the numerical accuracy tests on the temperature field and the radius, respectively. The
numerical estimates for the radius were calculated using the grid points adjacent to the
interface.

FIG. 8. 2D Stefan problem. The contour shows the interface location at t = 0.15. This computation uses
1000 grid points in each spatial direction. The supercooled material in the exterior region promotes unstable
growth.
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FIG. 9. 3D Stefan problem. The contour shows the interface location at t = 0.14. This computation uses
100 grid points in each spatial direction. The supercooled material in the exterior region promotes unstable
growth.

4.3.3. Example 12

The following two examples illustrate our method’s potential for modeling crystal growth
in two and three spatial dimensions. We obtain a fair amount of detail in the dendrite
structures with little computational effort, since our method yields a symmetric linear system
that can be inverted efficiently. (Both 2D and 3D numerical experiments were performed
on a Pentium III laptop.)

Let � = [−1.5, 1.5]2 for the 2D case and � = [−1.5, 1.5]3 for the 3D case, with an
initially circular (spherical) interface of radius 0.1. Initially, T = 0 inside �−, and T =
−0.5 outside �−. Here, [ho] = 1, so the interface velocity is given by S = −[∇T · �N ].
Dirichlet boundary conditions of T = −0.5 are enforced on ∂�. The T = −0.5 material is
supercooled and the interface grows outward in an unstable fashion as shown in Figs. 8 and
9. Of course, we expect anisotropic effects due to the grid, since the interface is unstable in
this supercooled example.
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5. CONCLUSIONS

We have proposed a very simple algorithm for obtaining second-order-accurate solutions
to the variable coefficient Poisson equation with Dirichlet boundary conditions on irregular
domains. Our discretization of the problem produces a symmetric matrix which is straight-
forward and computationally inexpensive to invert. Current second-order-accurate state of
the art algorithms are more complicated to apply and produce nonsymmetric discretization
matrices which are more costly to invert. While some authors claim that they can efficiently
invert nonsymmetric matrices, it makes little sense to use a discretization that is both more
complicated and produces a nonsymmetric matrix when one can use a simpler discretization
and obtain a symmetric matrix.

With a number of numerical examples, we have demonstrated that second-order-accurate
numerical results are readily obtained on reasonable grids. In addition, we have shown how
the proposed symmetric discretization can be applied to an implicit time discretization of
the heat equation on an irregular domain to obtain second-order-accurate results there as
well. Last, we addressed the Stefan problem where second-order-accurate results can be
obtained only if the interface velocity is known to second-order accuracy. Unfortunately,
the interface velocity depends on derivatives of the temperature which are one order less
accurate than the temperature itself producing overall first-order-accurate results. However,
our method still lowers the truncation error in this case as the decoupled heat equation
step can be solved with second-order accuracy. Our symmetric discretization enabled us to
carry out numerical experiments in three spatial dimensions in a reasonable amount of time
without the need for a parallel implementation of the code.
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